Introduction to Machine Learning

The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing.

Introduction to Machine Learning

E. Alpaydin

Massachusetts Institute of Technology

2020

Abstract

A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks.
The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks.

The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals.

Contents:

  1. Supervised learning
  2. Bayesian decision theory
  3. Parametric methods
  4. Multivariate methods
  5. Dimensionality reduction
  6. Clusering; nonparametric methods
  7. Decision trees
  8. Linear discrimination
  9. Multilayer perceptrons
  10. Ddeep learning
  11. Local models
  12. Kernel machines
  13. Graphical models
  14. Hidden markov models
  15. Bayesian estimation
  16. Combining multiple learners
  17. Reinforcement learning
  18. Design and analysis of machine learning experiments.

Citation

E. Alpaydin, Introduction to Machine Learning, Massachusetts Institute of Technology, 2020

Collection

Bộ sưu tập số Lĩnh vực Cơ khí, Chế tạo máy

Related document

Introduction to Machine LearningReverse Engineering: Technology of ReinventionPath planning of cooperative mobile robots using discrete event models

Introduction to Machine Learning

Reverse Engineering: Technology of ReinventionPath planning of cooperative mobile robots using discrete event model

QR code

Introduction to Machine Learning

Content

  • Thứ Ba, 17:10 14/02/2023

Tin tiêu điểm

Hướng dẫn khai thác và sử dụng Thư viện Đại học Công nghiệp Hà Nội năm 2024

Hướng dẫn khai thác và sử dụng Thư viện Đại học Công nghiệp Hà Nội năm 2024

Thứ Ba, 14:33 17/09/2024

PGS.TS Nguyễn Thị Hồng Nga, Giám đốc - Trung tâm Đào tạo Sau đại học trao tặng 02 đầu sách ngoại văn cho Trung tâm Thông tin - Thư viện

Thứ Sáu, 07:37 24/05/2024
Hướng dẫn khai thác Bộ sưu tập tài nguyên giáo dục mở (OER)

Hướng dẫn khai thác Bộ sưu tập tài nguyên giáo dục mở (OER)

Thứ Bảy, 15:58 04/05/2024

Truy cập hàng triệu sách điện tử miễn phí với The Online Books Page

Thứ Hai, 08:38 22/01/2024
5 khóa học miễn phí về thiết kế đồ họa

5 khóa học miễn phí về thiết kế đồ họa

Thứ Tư, 09:33 13/12/2023

Các bài đã đăng

Philosophy of Computer Science: An Introductory Course

Philosophy of Computer Science: An Introductory Course

Thứ Năm, 14:08 21/11/2024
Our Extractive Age: Expressions of Violence and Resistance

Our Extractive Age: Expressions of Violence and Resistance

Thứ Năm, 14:03 21/11/2024
Understanding the DOM: Document Object Model

Understanding the DOM: Document Object Model

Thứ Năm, 13:58 21/11/2024
Heat Treatment Conventional and Novel Applications

Heat Treatment Conventional and Novel Applications

Thứ Năm, 13:51 21/11/2024
Swift Notes for Professionals

Swift Notes for Professionals

Thứ Năm, 13:42 21/11/2024

연세 토픽 II 읽기 = Yonsei TOPIK II Đọc

Thứ Ba, 16:36 14/02/2023

영어음운론 = English Phonology

Thứ Ba, 15:40 14/02/2023

읽고 찾아가 보는 한국문화 = Văn hóa Hàn Quốc để đọc và tham quan

Thứ Ba, 15:34 14/02/2023

Phân tích đáp án các bài luyện dịch tiếng Trung

Thứ Ba, 15:10 14/02/2023

2017 KOTRA 지속가능경영 & 인권경영 보고서t = Báo cáo kinh doanh bền vững và kinh doanh nhân quyền KOTRA 2017

Thứ Ba, 14:59 14/02/2023