Deep Learning

The book offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.

Deep Learning

Ian Goodfellow

MIT Press

2016

Abstract

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The book offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Contents:

Introduction

1. Applied math and machine learning basics:

  • Linear algebra
  • Probability and information theory
  • Numerical computation; machine learning basiccs.

2. Deep net works:

  • Modern practices: deep feedforward networks
  • Regularization for deep learning
  • Optimization for training deep models
  • Convolutional networks
  • Sequence modeling: recurrent and recursive nets
  • Practical methodology
  • Applications.

3. Deep learning research

  • Linear factor models
  • Autoencoders
  • Representation learning
  • Structured probabilistic models for deep learning
  • Monte carlo methods
  • Confronting the partition
  • Approximate inference
  • Deep generative models.

Citation

Ian Goodfellow, Deep Learning, MIT Press, 2016

Collection

Lĩnh vực Công nghệ thông tin

Related document

Deep LearningA General Introduction to Data AnalyticsBộ sưu tập số Lĩnh vực Công nghệ thông tin

Deep Learning

A General Introduction to Data AnalyticsDesigning Interfaces

QR code

Deep Learning

Content

  • Chủ Nhật, 11:04 26/02/2023

Tin tiêu điểm

Hướng dẫn khai thác và sử dụng Thư viện Đại học Công nghiệp Hà Nội năm 2024

Hướng dẫn khai thác và sử dụng Thư viện Đại học Công nghiệp Hà Nội năm 2024

Thứ Ba, 14:33 17/09/2024

PGS.TS Nguyễn Thị Hồng Nga, Giám đốc - Trung tâm Đào tạo Sau đại học trao tặng 02 đầu sách ngoại văn cho Trung tâm Thông tin - Thư viện

Thứ Sáu, 07:37 24/05/2024
Hướng dẫn khai thác Bộ sưu tập tài nguyên giáo dục mở (OER)

Hướng dẫn khai thác Bộ sưu tập tài nguyên giáo dục mở (OER)

Thứ Bảy, 15:58 04/05/2024

Truy cập hàng triệu sách điện tử miễn phí với The Online Books Page

Thứ Hai, 08:38 22/01/2024
5 khóa học miễn phí về thiết kế đồ họa

5 khóa học miễn phí về thiết kế đồ họa

Thứ Tư, 09:33 13/12/2023

Các bài đã đăng

Philosophy of Computer Science: An Introductory Course

Philosophy of Computer Science: An Introductory Course

Thứ Năm, 14:08 21/11/2024
Our Extractive Age: Expressions of Violence and Resistance

Our Extractive Age: Expressions of Violence and Resistance

Thứ Năm, 14:03 21/11/2024
Understanding the DOM: Document Object Model

Understanding the DOM: Document Object Model

Thứ Năm, 13:58 21/11/2024
Heat Treatment Conventional and Novel Applications

Heat Treatment Conventional and Novel Applications

Thứ Năm, 13:51 21/11/2024
Swift Notes for Professionals

Swift Notes for Professionals

Thứ Năm, 13:42 21/11/2024

Data Communications & Computer Network

Chủ Nhật, 10:53 26/02/2023

Electric and Hybrid Vehicles: Principles, Design and Technology

Chủ Nhật, 10:19 26/02/2023

Injection Mold Design Engineering

Chủ Nhật, 09:57 26/02/2023

Introduction to Self - Driving Vehicle Technology

Chủ Nhật, 09:43 26/02/2023

みんなの日本語初級II 第2版 翻訳・文法解説 ベトナム語版 = Minna No Nihongo sơ cấp 2: Bản dịch và giải thích ngữ pháp tiếng Việt Tái bản lần 2

Chủ Nhật, 09:25 26/02/2023