Data Mining Practical Machine Learning Tools and Techniques

The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise.

Data Mining Practical Machine Learning Tools and Techniques

Ian H. Witten, Eibe Frank, Mark Hall, Christopher J. Pal

Morgan Kaufmann Publishers

2017

Abstract

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.

Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research.

Citation

Witten, Ian H., Eibe Frank, and Mark A. Hall. Data Mining Practical Machine Learning Tools and Techniques Third Edition. Morgan Kaufmann, 2017.

Collection

Công nghệ thông tin

Related document

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Concepts and Techniques

Artificial Intelligence with Python
Data Mining Practical Machine Learning Tools and TechniquesData Mining Concepts and TechniquesArtificial Intelligence with Python

QR code

Data Mining Practical Machine Learning Tools and Techniques

Content

  • Thứ Hai, 13:54 26/04/2021

Tin tiêu điểm

Hướng dẫn khai thác và sử dụng Thư viện Đại học Công nghiệp Hà Nội năm 2024

Hướng dẫn khai thác và sử dụng Thư viện Đại học Công nghiệp Hà Nội năm 2024

Thứ Ba, 14:33 17/09/2024

PGS.TS Nguyễn Thị Hồng Nga, Giám đốc - Trung tâm Đào tạo Sau đại học trao tặng 02 đầu sách ngoại văn cho Trung tâm Thông tin - Thư viện

Thứ Sáu, 07:37 24/05/2024
Hướng dẫn khai thác Bộ sưu tập tài nguyên giáo dục mở (OER)

Hướng dẫn khai thác Bộ sưu tập tài nguyên giáo dục mở (OER)

Thứ Bảy, 15:58 04/05/2024

Truy cập hàng triệu sách điện tử miễn phí với The Online Books Page

Thứ Hai, 08:38 22/01/2024
5 khóa học miễn phí về thiết kế đồ họa

5 khóa học miễn phí về thiết kế đồ họa

Thứ Tư, 09:33 13/12/2023

Các bài đã đăng

Introduction to Soil Science Laboratory Manual

Introduction to Soil Science Laboratory Manual

Thứ Hai, 20:16 20/01/2025
Chem 260: Inorganic Chemistry

Chem 260: Inorganic Chemistry

Thứ Hai, 18:24 20/01/2025
Wind Turbine Icing: Recent Advances in Icing Characteristics and Protection Technology

Wind Turbine Icing: Recent Advances in Icing Characteristics and Protection Technology

Thứ Hai, 11:15 20/01/2025
Recent Scientific and Therapeutic Advances in Allograft

Recent Scientific and Therapeutic Advances in Allograft

Thứ Hai, 11:06 20/01/2025
Nanofabrication Techniques: Principles, Processes and Applications

Nanofabrication Techniques: Principles, Processes and Applications

Thứ Hai, 10:54 20/01/2025

Data Mining Concepts and Techniques

Thứ Năm, 13:50 22/04/2021

Deep Learning with Python

Thứ Năm, 09:36 22/04/2021

Giới thiệu sách: CAD/CAM: Principles and applications

Thứ Sáu, 14:37 02/04/2021
Giới thiệu sách: Artificial Intelligence with Python

Giới thiệu sách: Artificial Intelligence with Python

Thứ Tư, 08:41 31/03/2021

Nonwoven fabric: Row materials, manufacture, applications, characteristics, testing processes

Thứ Ba, 08:38 10/09/2019