Interpretable Machine Learning
Cuốn sách này nói về việc tạo ra các mô hình học máy và các quyết định của chúng có thể hiểu được. Sau khi khám phá các khái niệm về khả năng diễn giải, bạn sẽ tìm hiểu về các mô hình đơn giản, dễ hiểu như cây quyết định, quy tắc quyết định và hồi quy tuyến tính. Các chương sau tập trung vào các phương pháp bất khả tri về mô hình chung để diễn giải các mô hình hộp đen như tầm quan trọng của đặc điểm và hiệu ứng cục bộ tích lũy cũng như giải thích các dự đoán riêng lẻ bằng các giá trị Shapley và LIME.

Thứ Tư, 10:20 19/11/2025
Copyright © 2018 Hanoi University of Industry.