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This book is dedicated to those who relentlessly pursue knowledge and selflessly
share it with others.
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Introduction

The reverse engineering learning process is similar to that of foreign language
acquisition for adults. The first phase of learning a foreign language begins
with an introduction to letters in the alphabet, which are used to construct
words with well-defined semantics. The next phase involves understanding
the grammatical rules governing how words are glued together to produce a
proper sentence. After being accustomed to these rules, one then learns how to
stitch multiple sentences together to articulate complex thoughts. Eventually it
reaches the point where the learner can read large books written in different
styles and still understand the thoughts therein. At this point, one can read
reference books on the more esoteric aspects of the language—historical syntax,
phonology, and so on.

In reverse engineering, the language is the architecture and assembly lan-
guage. A word is an assembly instruction. Paragraphs are sequences of assembly
instructions. A book is a program. However, to fully understand a book, the
reader needs to know more than just vocabulary and grammar. These additional
elements include structure and style of prose, unwritten rules of writing, and
others. Understanding computer programs also requires a mastery of concepts
beyond assembly instructions.

It can be somewhat intimidating to start learning an entirely new technical
subject from a book. However, we would be misleading you if we were to claim
that reverse engineering is a simple learning endeavor and that it can be com-
pletely mastered by reading this book. The learning process is quite involved
because it requires knowledge from several disparate domains of knowledge. For
example, an effective reverse engineer needs to be knowledgeable in computer
architecture, systems programming, operating systems, compilers, and so on;
for certain areas, a strong mathematical background is necessary. So how do you

xxiii
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Introduction

know where to start? The answer depends on your experience and skills. Because

we cannot accommodate everyone’s backg_round, this introducponbou::mes the
learning and reading methods for those without any progratnflmmiih:: ground.
You should find your “position” in the specfrum and star from e.

For the sake of discussion, we loosely define reverse engineering as the pro-
cess of understanding a system. Itis a problem-solving process. A system can
be a hardware device, a software program, a physical or chemical process,
and so on. For the purposes of the book, the system is a software program.
To understand a program, you must first understand how software is written.
Hence, the first requirement is knowing how to program a computer through
a language such as C, C++, Java, and others. We suggest first learning C due
to its simplicity, effectiveness, and ubiquity. Some excellent reference?s t9 con-
sider are The C Programming Language, by Brian Kernighan and Dennis Ritchie
(Prentice Hall, 1988) and C: A Reference Manual, by Samuel Harbison (Prentice
Hall, 2002). After becoming comfortable with writing, compiling, and debug-
ging basic programs, consider reading Expert C Programming: Deep C Secrets, by
Peter van der Linden (Prentice Hall, 1994). At this point, you should be familiar
with high-level concepts such as variables, scopes, functions, pointers, condi-
tionals, loops, call stacks, and libraries. Knowledge of data structures such as
stacks, queues, linked lists, and trees might be useful, but they are not entirely
necessary for now. To top it off, you might skim through Compilers: Principles,
Techniques, and Tools, by Alfred Aho, Ravi Sethi, and Jeffrey Ullman, (Prentice
Hall, 1994) and Linkers and Loaders, by John Levine (Morgan Kaufmann, 1999),
to get a better understanding of how a program is really put together. The key
purpose of reading these books is to gain exposure to basic concepts; you do
not have to understand every page for now (there will be time for that later).
Overachievers should consider Advanced Compiler Design and Implementation, by
Steven Muchnick (Morgan Kaufmann, 1997).

Once you have a good understanding of how programs are generally written,
exec.:uted, and del?ugged, you should begin to explore the program’s execution
e.nvxronm.ent, which includes the processor and operating system. We suggest
first !earmng about the Intel processor by skimming through Intel 64 and 1A-32
Arch{tectures SOftzuare Developer’s Manual, Volume 1: Basic Architecture by Intel, with
special attention to Chapters 2-7. These chapters explain the basic elements of a
modern computer. Readers interested in ARM should consider Cortex-A Series
Programmer’s Guide and ARM Architecture R 5 S ks
Edition by ARM. While our book eference Manual ARMv7-A and ARMuv7-R

: r DOOKk covers x86/x64/ARM, we do not discuss every

architectural detail. (We assume that
the i
as necessary.) In skimming throu reader will refer to these manuals,

T gh these ma 3
apprec ltah(l)n o(fi the techpical building blocks of : 2:2;){’1(:;5}‘50‘;:3: 5;:";2 Efc?rlz
grr:(;er\%::mu(rl\’rz:\itii:i;n[g]l consider Structured Computer Org%mx}.,zation'by Andrew

all, 1998). All readers should also consult the Microsoft PE
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and COFF Specification. At this point, you will have all the necessary background
to read and understand Chapter 1, “x86 and x64,” and Chapter 2, “ARM.”

Next, you should explore the operating system. There are many different
operating systems, but they share many common concepts including processes,
threads, virtual memory, privilege separation, multi-tasking, and so on. The
best way to understand these concepls is to read Modern Operating Systems, by
Andrew Tanenbaum (Prentice Hall, 2005). Although Tanenbaum’s text is excellent
for concepts, it does not discuss important technical details for real-life operat-
ing systems. For Windows, you should consider skimming through Windows
NT Device Driver Development, by Peter Viscarola and Anthony Mason (New
Riders Press, 1998); although it is a book on driver development, the background
chapters provide an excellent and concrete introduction to Windows. (It is also
excellent supplementary material for the Windows kernel chapter in this book.)
For additional inspiration (and an excellent treatment of the Windows memory
manager), you should also read What Makes It Page? The Windows 7 (x64) Virtual
Memory Manager, by Enrico Martignetti (CreateSpace Independent Publishing
Platform, 2012).

At this point, you would have all the necessary background to read and under-
stand Chapter 3 “The Windows Kernel.” You should also consider learning Win32
programming. Windows System Programming, by Johnson Hart (Addison-Wesley
Professional, 2010), and Windows via C/C++, by Jeffrey Richter and Christophe
Nasarre (Microsoft Press, 2007), are excellent references.

For Chapter 4, “Debugging and Automation,” consider Inside Windows
Debugging: A Practical Guide to Debugging and Tracing Strategies in Windows, by
Tarik Soulami (Microsoft Press, 2012), and Advanced Windows Debugging, by
Mario Hewardt and Daniel Pravat (Addison-Wesley Professional, 2007).

Chapter 5, “Obfuscation,” requires a good understanding of assembly language
and should be read after the x86/x64/ARM chapters. For background knowledge,
consider Surreptitious Software: Obfuscation, Watermarking, and Tamperproofing for
Software Protection, by Christian Collberg and Jasvir Nagra (Addison-Wesley

Professional, 2009).

This book includes exercises and walk-throughs with real, malicious viruses
and rootkits. We intentionally did this to ensure that readers can immediately apply
their newly learned skills. The malware samples are referenced in alphabetical order
(Sample A, B, C, ...), and you can find the corresponding SHA1 hashes in the Appendix.
Because there may be legal concerns about distributing such samples with the book,
we decided not to do so; however, you can download these samples by searching vari-
ous malware repositories, such as www.malware.lu, or request them from the forums
athttp://kernelmode.info. Many of the samples are from famous hacking inci-
dents that made worldwide news, so they should be interesting. Perhaps some enthu-
siastic readers will gather all the samples in a package and share them on BitTorrent.



