Bruce Dang. Alexandre Gazet, and Elias Bachaalany

with contributions from Sébastien Josse

D ET C AL
REVERSE
ENGINEERING

_X86, X64, ARM, WINDOWS" KERNEL,
/AR ERSING TOOLS, AND OBFUSCATION

Practical Reverse

gy

x86, x64, ARM, Windows™ Kernel,
Revgr_s_ln_g Tools, and Obfuscation

4o

i
TION
F THE ASIA FOUNDA
G GRTRE-SALF. Bruce Dang

avi ThYG cta quy cuav Alexandre Gazet
| xmONGPUJCBANLALFliag Bachaalany

with contributions from Sébastien Josse

Nmu ma NG *tH m
1HUXG Iu# IPGN" 1IN IUUHH

) 01 07__
04922

WILEY

SE———

Practical Reverse Engineering: x86, x64, ARM, Windows® Kernel, Reversing Tools, and Obfuscation

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Copyright © 2014 by Bruce Dang
Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-78731-1
ISBN: 978-1-118-78725-0 (ebk)
ISBN: 978-1-118-78739-7 (ebk)

Manufactured in the United States of America

109876
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or
108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or autho-
rization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive,

Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed
to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)

748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought.
Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Web site is referred to in this work as a citation and/or a potential source of furtherinformation does not mean that
the author or the publisher endorses the information the organization or website may provide or recommendations
it may make. Further, readers should be aware that Internet websites listed in thiswork may have changed or disap-

peared between when this work was written and whenitisread.” [|, 70
For general information on our other products an services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002. '

Wiley publishes in a variety of print and electronic formats and by pri'nt-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport .wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013954099

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates, in the United States and other countries, and may not be used without written permission. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product

or vendor mentioned in this book.
TOET0 %

»
\ \
$ o e |

This book is dedicated to those who relentlessly pursue knowledge and selflessly
share it with others.

About the Authors

Bruce Dang is a senior security development engineering lead at Microsoft
working on security technologies in unreleased Microsoft products. Previously,
he worked on security vulnerabilities reported to Microsoft and was the first
to publicly share analytical techniques for targeted attacks with Office docu-
ments. He and his team analyzed the famous Stuxnet malware, which suppos-
edly attacked the Iranian uranium enrichment process. He has spoken at RSA,
BlackHat Vegas, BlackHat Tokyo, Chaos Computer Club, REcon, and many
other industry conferences.

Alexandre Gazetisa security researcher at Quarkslab. His interests focus on
reverse engineering, software protections, and vulnerability research. Alexandre
has presented at several conferences, including HITB Kuala Lumpur (2009) and
REcon Montreal (2010 and 2011).

Elias Bachaalany has been a computer programmer, reverse engineer, freelance
technical writer, and an occasional reverse engineering trainer for the past 14
years. Over his long career, Elias has worked with various technologies, includ-
ing writing scripts, doing extensive web development, working with database
design and programming, writing device drivers and low-level code such as
boot loaders or minimal operating systems, writing managed code, assessing
software protections, and writing reverse engineering and desktop security
tools. Elias has also presented twice at REcon Montreal (2012 and 2013).

While working for Hex-Rays SA in Belgium, Elias helped to improve and add
new features to IDA Pro. During that period, he authored various technical blog
Posts, provided IDA Pro training, developed various debugger plugins, amped
up IDA Pro’s scripting facilities, and contributed to the IDAPython project since

version 1.2.0 and onwards. Elias currently works at Microsoft with a talented
team of software security engineers.

vii

About the Authors

Sébastien Josse is a security researcher at the French Ministry of Defense
(Direction Générale de I’Armement). He has more than ten years of experience
as an instructor, researcher, and consultant in the field of information systems
security, in both the civilian and defense sectors. He dedicated his PhD disserta-
tion (Ecole Polytechnique, 2009) to the dynamic analysis of protected programs,
focusing mainly on cryptographic mechanisms resistant to reverse engineering
and on the use of a virtualization system to carry through analysis of protected
programs. He has published in the journal JICV and several conferences pro-
ceedings, including ECRYPT (2004), EICAR (2006, 2008, 2011), AVAR (2007) and
HICSS (2012, 2013 and 2014).

About the Technical Editor

Matt Miller is a principal security engineer in Microsoft’s Trustworthy Computing
organization, where he currently focuses on researching and developing exploit-
mitigation technology. Prior to joining Microsoft, Matt was core developer for
the Metasploit framework and a contributor to the journal Uninformed, where
he wrote about topics related to exploitation, reverse engineering, program
analysis, and operating system internals.

ix

Executive Editor
Carol Long

Project Editor
John Sleeva

Technical Editor
Matt Miller

Production Editor
Daniel Scribner

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of
Marketing
David Mayhew

Credits

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Vice President and Executive
Group Publisher
Richard Swadley

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Todd Klemme

Proofreader
Josh Chase, Word One New York

Indexer
Ron Strauss

Cover Designer
Ryan Sneed

xi

Acknowledgments

Writing this book has been one of the most interesting and time-consuming
endeavors we have ever gone through. The book represents something that we
wish we had when we started learning about reverse engineering more than 15
years ago. At the time, there was a dearth of books and online resources (there
were no blogs back then); we learned the art primarily through friends and
independent trial-and-error experiments. The information security “industry”
was also non-existent back then. Today, the world is different. We now have
decompilers, web scanners, static source scanners, cloud (?), and APTs (unthink-
able!). Numerous blogs, forums, books, and in-person classes aim to teach reverse
engineering. These resources vary greatly in quality. Some are sub-standard
but shamelessly published or offered to take advantage of the rise in demand
for computer security; some are of extremely high quality but not well attended/
read due to lack of advertising, specialization or because they are simply “too
esoteric.” There is not a unifying resource that people can use as the foundation
for learning reverse engineering. We hope this book is that foundation.

Now for the best part, acknowledging the people who helped us arrive at
where we are today. All of the authors would like to acknowledge Rolf Rolles
for his contributions to the obfuscation chapter. Rolf is a real pioneer in the
field of reverse engineering. His seminal work on virtual machine deobfusca-
tion, applying program analysis to reverse engineering, and binary analysis
education influenced and inspired a new generation of reverse engineers. We
hope that he will continue to contribute to the field and inspire others to do the
same. Next, we would also like to thank Matt Miller, our comrade and techni-
cal reviewer. Matt is another true pioneer in our field and has made seminal
contributions to exploit mitigations in Windows. His dedication to details and
helping others learn should be a model for all. Finally, we would like to thank
Carol Long, John Sleeva, Luann Rouff, and the staff at John Wiley & Sons for

putting up with us through the publishing process.
— The authors

xiii

Acknowledgments

Iwould like to thank my parents for their sacrifices to give me better opportuni-
ties in life; my sister and brother, Ivy Dang and Donald Dang, for being a constant
source of support and inspiration; and Rolf Rolles for being a good friend and
source of reason all these years. I did not have many role models growing up, but
the following people directly helped shape my perspectives: Le Thanh Sang, Vint
Cerf, and Douglas Comer. At university, learned the joy of Chinese literature
from David Knetchges, Buddhist studies from Kyoko Tokuno, Indian history from
Richard Salomon (who would have thought so much can be learned from rocks
and coins!), Central Asian history from Daniel Waugh, and Chinese language
from Nyan-Ping Bi. While they are not reverse engineers, their enthusiasm and
dedication forever inspired and made me a better human being and engineer. If
I had met them earlier, my career path would probably be very different.

Through the journey of professional life, I was fortunate enough to meet
intelligent people who influenced me (in no particular order): Alex Carp, rebel,
Navin Pai, Jonathan Ness, Felix Domke, Karl J., Julien Tinnes, Josh Phillips, Daniel
Radu, Maarten Boone, Yoann Guillot, IvanlefOu (thanks for hosting us), Richard
van Eeden, Dan Ho, Andy Renk, Elia Florio, Ilfak Guilfanov, Matt Miller, David
Probert, Damian Hasse, Matt Thomlinson, Shawn Hoffman, David Dittrich, Eloi
Vanderbeken, LMH, Ali Rahbar, Fermin Serna, Otto Kivling, Damien Aumaitre,
Tavis Ormandy, Ali Pezeshk, Gynvael Coldwind, anakata (a rare genius), Richard
van Eeden, Noah W.,, Ken Johnson, Chengyun Yu, Elias Bachaalany, Felix von
Leitner, Michal Chmielewski, sectorx, Son Pho Nguyen, Nicolas Pouvesle, Kostya
Kortchinsky, Peter Viscerola, Torbjorn L., Gustavo di Scotti, Sergiusz Fonrobert,
Peter W., Ilja van Sprundel, Brian Cavenah, upb, Maarten Van Horenbeeck, Robert
Hensing, Cristian Craioveanu, Claes Nyberg, Igor Skorchinsky, John Lambert,
Mark Wodrich (role model Buddhist), David Midturi, Gavin Thomas, Sebastian
Porst, Peter Vel, Kevin Broas, Michael Sandy, Christer Oberg, Mateusz “j00ru”
Jurczyk, David Ross, and Raphael Rigo. Jonathan Ness and Damian Hasse
were always supportive of me doing things differently and constantly gave me
opportunities to fail/succeed. If I forgot you, please forgive me.

The following people directly provided feedback and improved the initial
drafts of my chapters: Michal Chmielewski, Shawn Hoffman, Nicolas Pouvesle,
Matt Miller, Alex Ionescu, Mark Wodrich, Ben Byer, Felix Domke, Ange Albertini,
Igor Skorchinsky, Peter Ferrie, Lien Duong, iZsh, Frank Boldewin, Michael Hale
Ligh, Sebastien Renaud, Billy McCourt, Peter Viscerola, Dennis Elser, Thai Duong,
Eloi Vanderbeken, Raphael Rigo, Peter Vel, and Bradley Spengler (a true over-
achiever). Without their insightful comments and suggestions, most of the book
would be unreadable. Of course, you can blame me for the remaining mistakes.

There are numerous other unnamed people that contributed to my knowledge
and therefore this book.

I a.lSF) want to thank Molly Reed and Tami Needham from The Omni Group
for giving us a license of OmniGraffle to make illustrations in the earlier drafts.

Acknowledgments

Last but not least, I want to thank Alex, Elias, and Sébastien for helping me
with this book. Without them, the book would have never seen the light of day.

— Bruce

First, I would like to thank Bruce Dang for inviting me to take part in this
great project. It has been a long and enriching journey. Rolf Rolles was there
at first, and I personally thank him for the countless hours we spent together
imagining the obfuscation chapter and collecting material. Sébastien Josse then
agreed to joined us; his contribution is invaluable and our chapter wouldn't be
the same without him. Thank you, Seb.

I also want to thank my friends Fabrice Desclaux, Yoann Guillot, and Jean-
Philippe Luyten for their invaluable feedback.

Finally, thanks to Carol Long for making this book possible, and to John
Sleeva for keeping us on track.

— Alexandre

I want to start by thanking Bruce Dang, my friend and colleague, for giving
me the chance to participate in this endeavor. I also want to thank all my friends
and colleagues for their support and help. In particular, I would like to thank
Daniel Pistelli (CEO of Cerbero GmbH), Michal Chmielewski, Swamy Shivaganga
Nagaraju, and Alexandre Gazet for their technical input and feedback during
the writing of the book.

I want to thank Mr. Ilifak Guilfanov (CEO of Hex-Rays SA). I learned a lot from
him while working at Hex-Rays. His hard work, patience, and perseverance to
create IDA Pro will always be an inspiration to me.

A big thanks to John Wiley & Sons for giving us the opportunity to publish
this book. Thanks also to the acquisition editor Carol Long for her prompt and
professional assistance, and to the project editor John Sleeva and copy editor
Luann Rouff for their energy, patience, and hard work.

— Elias

I want to thank Alexandre, Elias, and Bruce for giving me the opportunity to
contribute to this book. I also want to thank Jean-Philippe Luyten for putting
us in touch. Finally, thanks to Carol Long and John Sleeva for their help and
professionalism in the realization of this project.

— Sébastien

Introduction

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

Appendix

Index

Contents at a Glance

x86 and x64

ARM

The Windows Kernel
Debugging and Automation

Obfuscation

Sample Names and Corresponding SHA1 Hashes

xxiii

39
87
187
267

341

343

xvii

Introduction

Chapter 1

Chapter 2

x86 and x64
Register Set and Data Types
Instruction Set
Syntax
Data Movement
Exercise
Arithmetic Operations

Stack Operations and Function Invocation

Exercises
Control Flow

System Mechanism
Address Translation
Interrupts and Exceptions

Walk-Through

Exercises

x64
Register Set and Data Types
Data Movement
Canonical Address
Function Invocation

Exercises

ARM

Basic Features

Data Types and Registers
System-Level Controls and Settings
Introduction to the Instruction Set

Contents

Xix

XX

Contents

Chapter 3

Loading and Storing Data
LDR and STR
Other Usage for LDR
LDM and STM
PUSH and POP
Functions and Function Invocation
Arithmetic Operations
Branching and Conditional Execution
Thumb State
Switch-Case
Miscellaneous
Just-in-Time and Self-Modifying Code
Synchronization Primitives
System Services and Mechanisms
Instructions
Walk-Through
Next Steps
Exercises

The Windows Kernel
Windows Fundamentals
Memory Layout
Processor Initialization
System Calls
Interrupt Request Level
Pool Memory
Memory Descriptor Lists
Processes and Threads
Execution Context
Kernel Synchronization Primitives
Lists
Implementation Details
Walk-Through
Exercises
Asynchronous and Ad-Hoc Execution
System Threads
Work Items
Asynchronous Procedure Calls
Deferred Procedure Calls
Timers
Process and Thread Callbacks
Completion Routines
I/O Request Packets
Structure of a Driver
Entry Points
Driver and Device Objects

47
47
51
52
56
57

61
64
65
67
67
67
68
70
71

78

87
88

88

89

92
104
106
106
107
109
110
111
112
119
123
128
128
129
131
135
140
142
143
144
146
147
149

Contents

Chapter 4

Chapter 5

IRP Handling

A Common Mechanism for User-Kernel Communication

Miscellaneous System Mechanisms
Walk-Throughs

An x86 Rootkit

An x64 Rootkit
Next Steps
Exercises

Building Confidence and Solidifying

Your Knowledge
Investigating and Extending Your Knowledge
Analysis of Real-Life Drivers

Debugging and Automation
The Debugging Tools and Basic Commands

Setting the Symbol Path
Debugger Windows

Evaluating Expressions

Process Control and Debut Events
Registers, Memory, and Symbols
Breakpoints

Inspecting Processes and Modules
Miscellaneous Commands

Scripting with the Debugging Tools

Pseudo-Registers

Aliases

Language

Script Files

Using Scripts Like Functions
Example Debug Scripts

Using the SDK

Concepts
Writing Debugging Tools Extensions

Useful Extensions, Tools, and Resources

Obfuscation
A Survey of Obfuscation Techniques

The Nature of Obfuscation: A Motivating Example

Data-Based Obfuscations

Control-Based Obfuscation

Simultaneous Control-Flow and Data-Flow
Obfuscation

Achieving Security by Obscurity

A Survey of Deobfuscation Techniques

The Nature of Deobfuscation: Transformation Inversion
Deobfuscation Tools
Practical Deobfuscation

150
150
153
155
156
172
178
180

180
182
184

187
188
189
189
190
194
198
208
211
214
216
216
219
226
240
244
249
257
258
262
264

267
269
269
273
278

284
288
289
289
295
312

xdi Contents

Appendix

Index

Case Study
First Impressions
Analyzing Handlers Semantics
Symbolic Execution
Solving the Challenge
Final Thoughts
Exercises

Sample Names and Corresponding SHA1 Hashes

328
328
330
333
334
336
336

N

343

Introduction

The reverse engineering learning process is similar to that of foreign language
acquisition for adults. The first phase of learning a foreign language begins
with an introduction to letters in the alphabet, which are used to construct
words with well-defined semantics. The next phase involves understanding
the grammatical rules governing how words are glued together to produce a
proper sentence. After being accustomed to these rules, one then learns how to
stitch multiple sentences together to articulate complex thoughts. Eventually it
reaches the point where the learner can read large books written in different
styles and still understand the thoughts therein. At this point, one can read
reference books on the more esoteric aspects of the language—historical syntax,
phonology, and so on.

In reverse engineering, the language is the architecture and assembly lan-
guage. A word is an assembly instruction. Paragraphs are sequences of assembly
instructions. A book is a program. However, to fully understand a book, the
reader needs to know more than just vocabulary and grammar. These additional
elements include structure and style of prose, unwritten rules of writing, and
others. Understanding computer programs also requires a mastery of concepts
beyond assembly instructions.

It can be somewhat intimidating to start learning an entirely new technical
subject from a book. However, we would be misleading you if we were to claim
that reverse engineering is a simple learning endeavor and that it can be com-
pletely mastered by reading this book. The learning process is quite involved
because it requires knowledge from several disparate domains of knowledge. For
example, an effective reverse engineer needs to be knowledgeable in computer
architecture, systems programming, operating systems, compilers, and so on;
for certain areas, a strong mathematical background is necessary. So how do you

xxiii

xxiv

Introduction

know where to start? The answer depends on your experience and skills. Because

we cannot accommodate everyone’s backg_round, this introducponbou::mes the
learning and reading methods for those without any progratnflmmiih:: ground.
You should find your “position” in the specfrum and star from e.

For the sake of discussion, we loosely define reverse engineering as the pro-
cess of understanding a system. Itis a problem-solving process. A system can
be a hardware device, a software program, a physical or chemical process,
and so on. For the purposes of the book, the system is a software program.
To understand a program, you must first understand how software is written.
Hence, the first requirement is knowing how to program a computer through
a language such as C, C++, Java, and others. We suggest first learning C due
to its simplicity, effectiveness, and ubiquity. Some excellent reference?s t9 con-
sider are The C Programming Language, by Brian Kernighan and Dennis Ritchie
(Prentice Hall, 1988) and C: A Reference Manual, by Samuel Harbison (Prentice
Hall, 2002). After becoming comfortable with writing, compiling, and debug-
ging basic programs, consider reading Expert C Programming: Deep C Secrets, by
Peter van der Linden (Prentice Hall, 1994). At this point, you should be familiar
with high-level concepts such as variables, scopes, functions, pointers, condi-
tionals, loops, call stacks, and libraries. Knowledge of data structures such as
stacks, queues, linked lists, and trees might be useful, but they are not entirely
necessary for now. To top it off, you might skim through Compilers: Principles,
Techniques, and Tools, by Alfred Aho, Ravi Sethi, and Jeffrey Ullman, (Prentice
Hall, 1994) and Linkers and Loaders, by John Levine (Morgan Kaufmann, 1999),
to get a better understanding of how a program is really put together. The key
purpose of reading these books is to gain exposure to basic concepts; you do
not have to understand every page for now (there will be time for that later).
Overachievers should consider Advanced Compiler Design and Implementation, by
Steven Muchnick (Morgan Kaufmann, 1997).

Once you have a good understanding of how programs are generally written,
exec.:uted, and del?ugged, you should begin to explore the program’s execution
e.nvxronm.ent, which includes the processor and operating system. We suggest
first !earmng about the Intel processor by skimming through Intel 64 and 1A-32
Arch{tectures SOftzuare Developer’s Manual, Volume 1: Basic Architecture by Intel, with
special attention to Chapters 2-7. These chapters explain the basic elements of a
modern computer. Readers interested in ARM should consider Cortex-A Series
Programmer’s Guide and ARM Architecture R 5 S ks
Edition by ARM. While our book eference Manual ARMv7-A and ARMuv7-R

: r DOOKk covers x86/x64/ARM, we do not discuss every

architectural detail. (We assume that
the i
as necessary.) In skimming throu reader will refer to these manuals,

T gh these ma 3
apprec ltah(l)n o(fi the techpical building blocks of : 2:2;){’1(:;5}‘50‘;:3: 5;:";2 Efc?rlz
grr:(;er\%::mu(rl\’rz:\itii:i;n[g]l consider Structured Computer Org%mx}.,zation'by Andrew

all, 1998). All readers should also consult the Microsoft PE

Introduction

XXV

and COFF Specification. At this point, you will have all the necessary background
to read and understand Chapter 1, “x86 and x64,” and Chapter 2, “ARM.”

Next, you should explore the operating system. There are many different
operating systems, but they share many common concepts including processes,
threads, virtual memory, privilege separation, multi-tasking, and so on. The
best way to understand these concepls is to read Modern Operating Systems, by
Andrew Tanenbaum (Prentice Hall, 2005). Although Tanenbaum’s text is excellent
for concepts, it does not discuss important technical details for real-life operat-
ing systems. For Windows, you should consider skimming through Windows
NT Device Driver Development, by Peter Viscarola and Anthony Mason (New
Riders Press, 1998); although it is a book on driver development, the background
chapters provide an excellent and concrete introduction to Windows. (It is also
excellent supplementary material for the Windows kernel chapter in this book.)
For additional inspiration (and an excellent treatment of the Windows memory
manager), you should also read What Makes It Page? The Windows 7 (x64) Virtual
Memory Manager, by Enrico Martignetti (CreateSpace Independent Publishing
Platform, 2012).

At this point, you would have all the necessary background to read and under-
stand Chapter 3 “The Windows Kernel.” You should also consider learning Win32
programming. Windows System Programming, by Johnson Hart (Addison-Wesley
Professional, 2010), and Windows via C/C++, by Jeffrey Richter and Christophe
Nasarre (Microsoft Press, 2007), are excellent references.

For Chapter 4, “Debugging and Automation,” consider Inside Windows
Debugging: A Practical Guide to Debugging and Tracing Strategies in Windows, by
Tarik Soulami (Microsoft Press, 2012), and Advanced Windows Debugging, by
Mario Hewardt and Daniel Pravat (Addison-Wesley Professional, 2007).

Chapter 5, “Obfuscation,” requires a good understanding of assembly language
and should be read after the x86/x64/ARM chapters. For background knowledge,
consider Surreptitious Software: Obfuscation, Watermarking, and Tamperproofing for
Software Protection, by Christian Collberg and Jasvir Nagra (Addison-Wesley

Professional, 2009).

This book includes exercises and walk-throughs with real, malicious viruses
and rootkits. We intentionally did this to ensure that readers can immediately apply
their newly learned skills. The malware samples are referenced in alphabetical order
(Sample A, B, C, ...), and you can find the corresponding SHA1 hashes in the Appendix.
Because there may be legal concerns about distributing such samples with the book,
we decided not to do so; however, you can download these samples by searching vari-
ous malware repositories, such as www.malware.lu, or request them from the forums
athttp://kernelmode.info. Many of the samples are from famous hacking inci-
dents that made worldwide news, so they should be interesting. Perhaps some enthu-
siastic readers will gather all the samples in a package and share them on BitTorrent.

