
onality • Robustness • Load and Scalability • Interoperability • Regression • Stres
• Performance • Functionality • Robustness • Load and Scalability • Interoperabili
n • Stress • Reliability • Performance • Functionality • Robustness • Load and sc'.
perability • Regression • Stress • Reliability • Performance • Functionality • Robu

ility.•

{calabil

9bustn

Reliab

{y • Int

ess • L
unctio
bility •

ression

Intero

oad an
onali

Perfor

on e S
Iter e

SOFTWARE TESTING

AND

QUALITY ASSURANCE

THEORY AND PRACTICE

Kshirasagar Naik

Priyadarshi Tripathy

ance
s • Reli

• Regr
lity • In

ess• L
Functic

bility •

ression
teroper

d and S
ality •

Perfon
• Stress

perabili

and
. Robu

•mance

ss • Re

)ility •

id Scal:
• Robu

oad nd Scalability • Interoperability • Regression • Stress • Reliability • PertOrmanee

onal ty • Robustness • Load and Scalability • Interoperability • Regression • Stress • Reli

ance • Functionality • Robustness • Load and Scalability • Interoperability • Regr

tres Reliability • Performance • Functionality • Robustness • Load and Scalability • In

pgression • Stress • Reliability • Performance • Functionality • Robustness • L

ala • Regression • Stress • Reliability • Performance • Functig

WWILEY



SOFTWARE TESTING
AND QUALITY
ASSURANCE
Theory and Practice

KSHIRASAGAR NAIK
Department of Electrical and Computer Engineering

University of Waterloo, Waterloo

PRIYADARSHI TRIPATHY
NEC Laboratories America, Inc.

02. or
w A53

WWILEY
A JOHN WILEY & SONS, INC., PUBLICATION



CONTENTS

Preface

List of Figures

List of Tables

CHAPTER 1 BASIC CONCEPTS AND PRELIMINARIES

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

l.10
1.11

1.12

1. 13

1.14

1.15

1.16

1.17

1.18

1.19

I .20

Quality Revolution 1

Software Quality 5

Role of Testing 7

Verification and Validation 7

Failure, Error, Fault, and Defect 9

Notion of Software Reliability 10

Objecti ves of Testing 10

What Is a Test Case? 11

Expected Outcome 12

Concept of Complete Testing 13

Central Issue in Testing 13

Testing Activities 14

Test Levels 16

Sources of Information for Test Case Selection 18

White-Box and Black-Box Testing 20

Test Planning and Design 21

Monitoring and Measuring Test Execution 22

Test Tools and Automation 24

Test Team Organization and Management 26

Outline of Book 27

References 28

Exercises 30

CHAPTER 2 THEORY OF PROGRAM TESTING 31

2.1 Basic Concepts in Testing Theory 31

2.2 Theory of Goodenough and Gerhart 32

2.2. I Fundamental Concepts 32

2.2.2 Theory of Testing 34

2.2.3 Program Errors 34

2.2.4 Conditions for Reliability 36

2.2.5 Drawbacks of Theory 37

2.3 Theory of Weyuker and Ostrand 37

vii



viii CONTENTS

2.4 Theory of Gourlay 39

2.4. I Few Definitions 40

2.4.2 Power of Test Methods 42

2.5 Adequacy of Testing 42

2.6 Limitations of Testing 45

2.7 Summary 46

Literature Review 47

References 48

Exercises 49

CHAPTER 3 UNIT TESTING 51

3.1 Concept of Unit Testing 51

3.2 Static Unit Testing 53

3.3 Defect Prevention 60

3.4 Dynamic Unit Testing 62

3.5 Mutation Testing 65

3.6 Debugging 68

3.7 Unit Testing in eXtreme Programming 71

3.8 JUnit: Framework for Unit Testing 73

3.9 Tools for Unit Testing 76

3.10 Summary 81

Literature Review 82

References 84

Exercises 86

CHAPTER 4 CONTROL FLOW TESTING

4.1 Basic Idea 88

4.2 Outline of Control Flow Testing 89

4.3 Control Flow Graph 90

4.4 Paths in a Control Flow Graph 93

4.5 Path Selection Criteria 94

4.5. I All-Path Coverage Criterion 96

4.5.2 Statement Coverage Criterion 97

4.5.3 Branch Coverage Criterion 98

4.5.4 Predicate Coverage Criterion 100

4.6 Generating Test Input 101

4.7 Examples of Test Data Selection 106

4.8 Containing Infeasible Paths 107
4.9 Summary 108

Literature Review 109

References 110

Exercises lil

CHAPTER 5 DATA FLOW TESTING 112

5.1 General Idea 112

5.2 Data Flow Anomaly 113

5.3 Overview of Dynamic Data Flow Testing 115
5.4 Data Flow Graph 116



CONTENTSix

5.5 Data Flow Terms 119

5.6 Data Flow Testing Criteria 121

5.7 Comparison of Data Flow Test Selection Criteria 124

5.8 Feasible Paths and Test Selection Criteria 125

5.9 Comparison of Testing Techniques 126

5.10 Summary 128

Literature Review 129

References 131

Exercises 132

CHAPTER 6 DOMAIN TESTING 135

6.1 Domain Error 135

6.2 Testing for Domain Errors 137

6.3 Sources of Domains 138

6.4 Types of Domain Errors 141

6.5 ON and OFF Points 144

6.6 Test Selection Criterion 146

6.7 Summary 154

Literature Review 155

References 156

Exercises 156

CHAPTER 7 SYSTEM INTEGRATION TESTING 158

7.1 Concept of Integration Testing 158

7.2 Different Types of Interfaces and Interface Errors 159

7.3 Granularity of System Integration Testing 163

7.4 System Integration Techniques 164

7.4.1 Incremental 164

7.4.2 Top Down 167

7.4.3 Bottom Up 171

7.4.4 Sandwich and Big Bang 173

7.5 Software and Hardware Integration 174

7.5.1 Hardware Design Verification Tests 174

7.5.2 Hardware and Software Compatibility Matrix 177

7.6 Test Plan for System Integration 180

7.7 Off-the-Shelf Component Integration 184

7.7. I Off-the-Shelf Component Testing 185

7.7.2 Built-in Testing 186

7.8 Summary 187

Literature Review 188

References 189

Exercises 190

CHAPTER 8 SYSTEM TEST CATEGORIES 192

8.1 Taxonomy of System Tests 192

8.2 Basic Tests 194

8.2. I Boot Tests 194

8.2.2 Upgrade/Downgrade Tests 195



X CONTENTS

8.2.3 Light Emitting Diode Tests 195

8.2.4 Diagnostic Tests 195

8.2.5 Command Line Interface Tests 196

8.3 Functionality Tests 196

8.3.1 

8.3.2 

8.3.3 

8.3.4 

8.3.5 

8.3.6 

8.3.7 

8.3.8 

Communication Systems Tests 196

Module Tests 197

Logging and Tracing Tests 198

Element Management Systems Tests

Management Information Base Tests

Graphical User Interface Tests 202

Security Tests 203

Feature Tests 204

8.4 Robustness Tests 204

8.4. I Boundary Value Tests 205

8.4.2 Power Cycling Tests 206

8.4.3 On-Line Insertion and Removal Tests
8.4.4 High-Availability Tests 206

8.4.5 Degraded Node Tests 207

8.5 Interoperability Tests 208

8.6 Performance Tests 209

8.7 Scalability Tests 210

8.8 Stress Tests 211

8.9 Load and Stability Tests 213

8.10 Reliability Tests 214

8.11 Regression Tests 214

8.12 Documentation Tests 215

8.13 Regulatory Tests 216

8.14 Summary 218

Literature Review 219

References 220

Exercises 221

CHAPTER 9 FUNCTIONAL TESTING

9.1 Functional Testing Concepts of Howden 222
9, I . I Different Types of Variables 224
9.1.2 Test Vector 230

9.1.3 Testing a Function in Context 231
9.2 Complexity of Applying Functional Testing 
9.3 Pairwise Testing 235

9.3. I Orthogonal Array 236

9.3.2 In Parameter Order 240
9.4 Equivalence Class Partitioning 244
9.5 Boundary Value Analysis 246
9.6 Decision Tables 248

9.7 Random Testing 252
9.8 Error Guessing 255

9.9 Category Partition 256
9.10 Summary 258

198

202

206

22

232



CONTENTSxi

Literature Review 260

References 261

Exercises 262

CHAPTER 10 TEST GENERATION FROM FSM MODELS

10.1 State-Oriented Model 265

10.2 Points of Control and Observation 269

10.3 Finite-State Machine 270

10.4 Test Generation from an FSM 273

10.5 Transition Tour Method 273

10.6 Testing with State Verification 277

10.7 Unique Input—Output Sequence 279

10.8 Distinguishing Sequence 284

10.9 Characterizing Sequence 287

10.10 Test Architectures 291

10.10.1 Local Architecture 292

10.10.2 Distributed Architecture 293

10.10.3 Coordinated Architecture 294

10.10.4 Remote Architecture 295

10.1 1 Testing and Test Control Notation Version 3 (TTCN-3) 295

10.11.1 Module

10.11.2 Data Declarations 296

10.11.3 Ports and Components 298

10.11.4 Test Case Verdicts 299

10.11.5 Test Case 300

10.12 Extended FSMs 302

10.13 Test Generation from EFSM Models 307

10.14 Additional Coverage Criteria for System Testing 313

10.15 Summary 315

Literature Review 316

References 317

Exercises 318

CHAPTER SYSTEM TEST DESIGN

11.1 Test Design Factors 321

11.2 Requirement Identification 322

11.3 Characteristics of Testable Requirements 331

Test Objective Identification 334

11.5 Example 335

11.6 Modeling a Test Design Process 345

11.7 Modeling Test Results 347

11.8 Test Design Preparedness Metrics 349

11.9 Test Case Design Effectiveness 350

11.10 Summary 351

Literature Review 351

References 353

Exercises 353



xii CONTENTS

CHAPTER 12 SYSTEM TEST PLANNING AND AUTOMATION

12.1 Structure of a System Test Plan 355

12.2 Introduction and Feature Description 356

12.3 Assumptions 357

12.4 Test Approach 357

12.5 Test Suite Structure 358

12.6 Test Environment 358

12.7 Test Execution Strategy 361

12.7. I Multicycle System Test Strategy 362

12.7.2 Characterization of Test Cycles 362

12.7.3 Preparing for First Test Cycle 366

12.7.4 Selecting Test Cases for Final Test Cycle 369

12.7.5 Prioritization of Test Cases 371

12.7.6 Details of Three Test cycles 372

12.8 Test Effort Estimation 377

12.8. I Number of Test Cases 378

12.8.2 Test Case Creation Effort 384

12.8.3 Test Case Execution Effort 385

12.9 Scheduling and Test Milestones 387

12.10 System Test Automation 391

12.11 Evaluation and Selection of Test Automation Tools 392

12.12 Test Selection Guidelines for Automation 395

12.13 Characteristics of Automated Test Cases 397

12.14 Structure of an Automated Test Case 399

12.15 Test Automation Infrastructure 400

12.16 Summary 402

Literature Review 403

References 405

Exercises 406

CHAPTER 13 SYSTEM TEST EXECUTION

13. I Basic Ideas 408

13.2 Modeling Defects 409

13.3 Preparedness to Start System Testing 415
13.4 Metrics for Tracking System Test 419

13.4. I Metrics for Monitoring Test Execution 

13.4.2 Test Execution Metric Examples 420
13.4.3 Metrics for Monitoring Defect Reports 

420

423

155

13.4.4 Defect Report Metric Examples 425
13.5 Orthogonal Defect Classification 428

13.6 Defect Causal Analysis 431

13.7 Beta Testing 435

13.8 First Customer Shipment 437

13.9 System Test Report 438

13.10 Product Sustaining 439

13.11 Measuring Test Effectiveness 441
13.12 Summary 445

Literature Review 446



CONTENTSxiii

References 447

Exercises 448

CHAPTER 14 ACCEPTANCE TESTING 450

14.1 Types of Acceptance Testing 450
14.2 Acceptance Criteria 451
14.3 Selection of Acceptance Criteria 461
14.4 Acceptance Test Plan 461

14.5 Acceptance Test Execution 463

14.6 Acceptance Test Report 464

14.7 Acceptance Testing in eXtreme Programming 466

14.8 Summary 467

Literature Review 468

References 468

Exercises 469

CHAPTER 15 SOFTWARE RELIABILITY 471

15.1 What Is Reliability? 471

15.1.1 Fault and Failure 472

15.1.2 Time 473

15.1.3 Time Interval between Failures 474

15.1.4 Counting Failures in Periodic Intervals 475

15.1.5 Failure Intensity 476

15.2 Definitions of Software Reliability 477

15.2. I First Definition of Software Reliability 477

15.2.2 Second Definition of Software Reliability 478

15.2.3 Comparing the Definitions of Software Reliability 479

15.3 Factors Influencing Software Reliability 479

15.4 Applications of Software Reliability 481

15.4. I Comparison of Software Engineering Technologies 481

15.4.2 Measuring the Progress of System Testing 481

15.4.3 Controlling the System in Operation 482

15.4.4 Better Insight into Software Development Process 482

15.5 Operational Profiles 482

15.5. I Operation 483

15.5.2 Representation of Operational Profile 483

15.6 Reliability Models 486

15.7 Summary 491

Literature Review 492

References 494

Exercises 494

CHAPTER 16 TEST TEAM ORGANIZATION

16.1 Test Groups 496

16.1.1 Integration Test Group 496

16.1.2 System Test Group 497

16.2 Software Quality Assurance Group 499

16.3 System Test Team Hierarchy 500



xiv CONTENTS

501
16.4 Effective Staffing of Test Engineers

16.5 Recruiting Test Engineers 504

16.5.1 Job Requisition 504

16.5.2 Job Profiling 505

16.5.3 Screening Resumes 505
506

16.5.4 Coordinating an Interview Team

16.5.5 Interviewing 507

16.5.6 Making a Decision 511

16.6 Retaining Test Engineers 511

16.6. I Career Path 511

16.6.2 Training 512

16.6.3 Reward System 513

16.7 Team Building 513

16.7.1 Expectations 513

16.7.2 Consistency 514

16.7.3 Information Sharing 514

16.7.4 Standardization 514

16.7.5 Test Environments 514

16.7.6 Recognitions 515

16.8 Summary 515

Literature Review 516

References 516

Exercises 517

CHAPTER 17 SOFIWARE QUALITY 519

17.1 Five Views of Software Quality 519

17.2 McCall's Quality Factors and Criteria 523

17.2.1 Quality Factors 523

17.2.2 Quality Criteria 527

17.2.3 Relationship between Quality Factors and Criteria 527

17.2.4 Quality Metrics 530

17.3 ISO 9126 Quality Characteristics 530

17.4 ISO 9000:2000 Software Quality Standard 534

17.4.1 ISO 9000:2000 Fundamentals 535

17.4.2 ISO 9001:2000 Requirements 537

17.5 Summary 542

Literature Review 544

References 544

Exercises 545

CHAPTER 18 MATURITY MODELS

18.1 Basic Idea in Software Process 546
18.2 Capability Maturity Model 548

18.2.1 CMM Architecture 549
18.2.2 Five Levels of Maturity and Key Process Areas 550
18.2.3 Common Features of Key Practices 553
18.2.4 Application of CMM 553
18.2.5 Capability Maturity Model Integration (CMMI) 554



CONTENTS

18.3 Test Process Improvement 555

18.4 Testing Maturity Model 568

18.5 Summary 578

Literature Review 578

References 579

Exercises 579

GLOSSARY

INDEX



PREFACE

karmany eva dhikaras te; ma phalesu kadachana; ma karmaphalahetur bhur; ma

te sango stv akarmani.

Your right is to work only; but never to the fruits thereof; may you not be

motivated by the fruits of actions; nor let your attachment to be towards inaction.

— Bhagavad Gita

We have been witnessing tremendous growth in the software industry over the past

25 years. Software applications have proliferated from the original data processing

and scientific computing domains into our daily lives in such a way that we do not

realize that some kind of software executes when we do even something ordinary,

such as making a phone call, starting a car, turning on a microwave oven, and

making a debit card payment. The processes for producing software must meet two

broad challenges. First, the processes must produce low-cost software in a short

time so that corporations can stay competitive. Second, the processes must produce

usable, dependable, and safe software; these attributes are commonly known as

quality attributes. Software quality impacts a number of important factors in our

daily lives, such as economy, personal and national security, health, and safety.

Twenty-five years ago, testing accounted for about 50% of the total time

and more than 50% of the total money expended in a software development

project—and, the same is still true today. Those days the software industry was a

much smaller one, and academia offered a single, comprehensive course entitled

Software Engineering to educate undergraduate students in the nuts and bolts of

software development. Although software testing has been a part of the classical

software engineering literature for decades, the subject is seldom incorporated into

the mainstream undergraduate curriculum. A few universities have started offering

an option in software engineering comprising three specialized courses, namely,

Requirements Specification, Software Design, and Testing and Quality Assurance.

In addition, some universities have introduced full undergraduate and graduate

degree programs in software engineering.

Considering the impact of software quality, or the lack thereof, we observe

that software testing education has not received its due place. Ideally, research

should lead to the development of tools and methodologies to produce low-cost,
high-quality software, and students should be educated in the testing fundamentals.

In other words, software testing research should not be solely academic in nature

but must strive to be practical for industry consumers. However, in practice, there

xvii



xviii PREFACE

is a large gap between the testing skills needed in the industry and what are taught

and researched in the universities.

Our goal is to provide the students and the teachers with a set of well-rounded

educational materials covering the fundamental developments in testing theory and

common testing practices in the industry. We intend to provide the students with the
' 'big picture" of testing and quality assurance, because software quality concepts are

quite broad. There are different kinds of software systems with their own intricate

characteristics. We have not tried to specifically address their testing challenges.

Instead, we have presented testing theory and practice as broad stepping stones

which will enable the students to understand and develop testing practices for

more complex systems.

We decided to write this book based on our teaching and industrial experi-

ences in software testing and quality assurance. For the past 15 years, Sagar has

been teaching software engineering and software testing on a regular basis, whereas

Piyu has been performing hands-on testing and managing test groups for testing

routers, switches, wireless data networks, storage networks, and intrusion preven-

tion appliances. Our experiences have helped us in selecting and structuring the

contents of this book to make it suitable as a textbook.

Who Should Read This Book?

We have written this book to introduce students and software professionals to the

fundamental ideas in testing theory, testing techniques, testing practices, and quality

assurance. Undergraduate students in software engineering, computer science, and

computer engineering with no prior experience in the software industry will be

introduced to the subject matter in a step-by-step manner. Practitioners too will

benefit from the structured presentation and comprehensive nature of the materials.

Graduate students can use the book as a reference resource. After reading the whole

book, the reader will have a thorough understanding of the following topics:

• Fundamentals of testing theory and concepts

• Practices that support the production of quality software

• Software testing techniques

• Life-cycle models of requirements, defects, test cases, and test results

• Process models for unit, integration, system, and acceptance testing

• Building test teams, including recruiting and retaining test engineers

• Quality models, capability maturity model, testing maturity model, and test

process improvement model

How Should This Book be Read?

The purpose of this book is to teach how to do software testing. We present some

essential background material in Chapter I and save the enunciation of software



PREFACE xix

quality questions to a later part of the book. It is difficult to intelligently discuss for

beginners what software quality means until one has a firm sense of what software

testing does. However, practitioners with much testing experience can jump to

Chapter 17, entitled "Software Quality," immediately after Chapter l.

There are three different ways to read this book depending upon someone's

interest. First, those who are exclusively interested in software testing concepts and

want to apply the ideas should read Chapter I ("Basic Concepts and Preliminaries"),

Chapter 3 ("Unit Testing"), Chapter 7 ("System Integration Testing"), and Chapters

8— 14, related to system-level testing. Second, test managers interested in improving

the test effectiveness of their teams can read Chapters l, 3, 7, 8—14, 16 ("Test

Team Organization"), 17 ("Software Quality"), and 18 ("Maturity Models"). Third,

beginners should read the book from cover to cover.

Notes for Instructors

The book can be used as a text in an introductory course in software testing and

quality assurance. One of the authors used the contents of this book in an under-

graduate course entitled Software Testing and Quality Assurance for several years

at the University of Waterloo. An introductory course in software testing can cover

selected sections from most of the chapters except Chapter 16. For a course with

more emphasis on testing techniques than on processes, we recommend to choose

Chapters 1 ("Basic Concepts and Preliminaries") to 15 ("Software Reliability").

When used as a supplementary text in a software engineering course, selected por-

tions from the following chapters can help students imbibe the essential concepts

in software testing:

Chapter l: Basic Concepts and Preliminaries

• Chapter 3: Unit Testing

• Chapter 7: System Integration Testing

• Chapter 8: System Test Category

• Chapter 14: Acceptance Testing

Supplementary materials for instructors are available at the following Wiley web-

site: http:/www.wiley.com/sagar.

Acknowledgments

In preparing this book, we received much support from many people, including the

publisher, our family members, and our friends and colleagues. The support has

been in many different forms. First, we would like to thank our editors, namely,

Anastasia Wasko, Val Moliere, Whitney A. Lesch, Paul Petralia, and Danielle

Lacourciere who gave us much professional guidance and patiently answered our

various queries. Our friend Dr. Alok Patnaik read the whole draft and made numer-

ous suggestions to improve the presentation quality of the book; we thank him for



XX PREFACE

all his effort and encouragement. The second author, Piyu Tripathy, Would like
thank his former colleagues at Nortel Networks, Cisco Systems, and Airvana Inc
and present colleagues at NEC Laboratories America.

Finally, the support of our parents, parents-in-law, and partners deservea
special mention. I, Piyu Tripathy, would like to thank my dear wife Leena, who
has taken many household and family duties off my hands to give me time that 1
needed to write this book. And I, Sagar Naik, would like to thank my loving wife
Alaka for her invaluable support and for always being there for me. I would also
like to thank my charming daughters, Monisha and Sameeksha, and exciting son,
Siddharth, for their understanding while I am writing this book. I am grateful to
my elder brother, Gajapati Naik, for all his support. We are very pleased that nowwe have more time for our families and friends.

Kshirasagar Naik
University of Waterloo
Waterloo

Priyadarshi Tripathy
NEC Laboratories America, Inc.
Princeton


