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PREFACE

karmany eva dhikaras te; ma phalesu kadachana; ma karmaphalahetur bhur; ma

te sango stv akarmani.

Your right is to work only; but never to the fruits thereof; may you not be

motivated by the fruits of actions; nor let your attachment to be towards inaction.

— Bhagavad Gita

We have been witnessing tremendous growth in the software industry over the past

25 years. Software applications have proliferated from the original data processing

and scientific computing domains into our daily lives in such a way that we do not

realize that some kind of software executes when we do even something ordinary,

such as making a phone call, starting a car, turning on a microwave oven, and

making a debit card payment. The processes for producing software must meet two

broad challenges. First, the processes must produce low-cost software in a short

time so that corporations can stay competitive. Second, the processes must produce

usable, dependable, and safe software; these attributes are commonly known as

quality attributes. Software quality impacts a number of important factors in our

daily lives, such as economy, personal and national security, health, and safety.

Twenty-five years ago, testing accounted for about 50% of the total time

and more than 50% of the total money expended in a software development

project—and, the same is still true today. Those days the software industry was a

much smaller one, and academia offered a single, comprehensive course entitled

Software Engineering to educate undergraduate students in the nuts and bolts of

software development. Although software testing has been a part of the classical

software engineering literature for decades, the subject is seldom incorporated into

the mainstream undergraduate curriculum. A few universities have started offering

an option in software engineering comprising three specialized courses, namely,

Requirements Specification, Software Design, and Testing and Quality Assurance.

In addition, some universities have introduced full undergraduate and graduate

degree programs in software engineering.

Considering the impact of software quality, or the lack thereof, we observe

that software testing education has not received its due place. Ideally, research

should lead to the development of tools and methodologies to produce low-cost,
high-quality software, and students should be educated in the testing fundamentals.

In other words, software testing research should not be solely academic in nature

but must strive to be practical for industry consumers. However, in practice, there

xvii
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is a large gap between the testing skills needed in the industry and what are taught

and researched in the universities.

Our goal is to provide the students and the teachers with a set of well-rounded

educational materials covering the fundamental developments in testing theory and

common testing practices in the industry. We intend to provide the students with the
' 'big picture" of testing and quality assurance, because software quality concepts are

quite broad. There are different kinds of software systems with their own intricate

characteristics. We have not tried to specifically address their testing challenges.

Instead, we have presented testing theory and practice as broad stepping stones

which will enable the students to understand and develop testing practices for

more complex systems.

We decided to write this book based on our teaching and industrial experi-

ences in software testing and quality assurance. For the past 15 years, Sagar has

been teaching software engineering and software testing on a regular basis, whereas

Piyu has been performing hands-on testing and managing test groups for testing

routers, switches, wireless data networks, storage networks, and intrusion preven-

tion appliances. Our experiences have helped us in selecting and structuring the

contents of this book to make it suitable as a textbook.

Who Should Read This Book?

We have written this book to introduce students and software professionals to the

fundamental ideas in testing theory, testing techniques, testing practices, and quality

assurance. Undergraduate students in software engineering, computer science, and

computer engineering with no prior experience in the software industry will be

introduced to the subject matter in a step-by-step manner. Practitioners too will

benefit from the structured presentation and comprehensive nature of the materials.

Graduate students can use the book as a reference resource. After reading the whole

book, the reader will have a thorough understanding of the following topics:

• Fundamentals of testing theory and concepts

• Practices that support the production of quality software

• Software testing techniques

• Life-cycle models of requirements, defects, test cases, and test results

• Process models for unit, integration, system, and acceptance testing

• Building test teams, including recruiting and retaining test engineers

• Quality models, capability maturity model, testing maturity model, and test

process improvement model

How Should This Book be Read?

The purpose of this book is to teach how to do software testing. We present some

essential background material in Chapter I and save the enunciation of software
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quality questions to a later part of the book. It is difficult to intelligently discuss for

beginners what software quality means until one has a firm sense of what software

testing does. However, practitioners with much testing experience can jump to

Chapter 17, entitled "Software Quality," immediately after Chapter l.

There are three different ways to read this book depending upon someone's

interest. First, those who are exclusively interested in software testing concepts and

want to apply the ideas should read Chapter I ("Basic Concepts and Preliminaries"),

Chapter 3 ("Unit Testing"), Chapter 7 ("System Integration Testing"), and Chapters

8— 14, related to system-level testing. Second, test managers interested in improving

the test effectiveness of their teams can read Chapters l, 3, 7, 8—14, 16 ("Test

Team Organization"), 17 ("Software Quality"), and 18 ("Maturity Models"). Third,

beginners should read the book from cover to cover.

Notes for Instructors

The book can be used as a text in an introductory course in software testing and

quality assurance. One of the authors used the contents of this book in an under-

graduate course entitled Software Testing and Quality Assurance for several years

at the University of Waterloo. An introductory course in software testing can cover

selected sections from most of the chapters except Chapter 16. For a course with

more emphasis on testing techniques than on processes, we recommend to choose

Chapters 1 ("Basic Concepts and Preliminaries") to 15 ("Software Reliability").

When used as a supplementary text in a software engineering course, selected por-

tions from the following chapters can help students imbibe the essential concepts

in software testing:

Chapter l: Basic Concepts and Preliminaries

• Chapter 3: Unit Testing

• Chapter 7: System Integration Testing

• Chapter 8: System Test Category

• Chapter 14: Acceptance Testing

Supplementary materials for instructors are available at the following Wiley web-

site: http:/www.wiley.com/sagar.
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